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Abstract Adulis, located on the Red Sea coast in present- day Eritrea, was a bustling trading 
centre between the first and seventh centuries CE. Several classical geographers—Agatharchides 
of Cnidus, Pliny the Elder, Strabo—noted the value of Adulis to Greco- Roman Egypt, particu-
larly as an emporium for living animals, including baboons (Papio spp.). Though fragmentary, 
these accounts predict the Adulite origins of mummified baboons in Ptolemaic catacombs, while 
inviting questions on the geoprovenance of older (Late Period) baboons recovered from Gabbanat 
el- Qurud (‘Valley of the Monkeys’), Egypt. Dated to ca. 800–540 BCE, these animals could extend 
the antiquity of Egyptian–Adulite trade by as much as five centuries. Previously, Dominy et al. 
(2020) used stable isotope analysis to show that two New Kingdom specimens of Papio hamadryas 
originate from the Horn of Africa. Here, we report the complete mitochondrial genomes from a 
mummified baboon from Gabbanat el- Qurud and 14 museum specimens with known provenance 
together with published georeferenced mitochondrial sequence data. Phylogenetic assignment 
connects the mummified baboon to modern populations of P. hamadryas in Eritrea, Ethiopia, and 
eastern Sudan. This result, assuming geographical stability of phylogenetic clades, corroborates 
Greco- Roman historiographies by pointing toward present- day Eritrea, and by extension Adulis, 
as a source of baboons for Late Period Egyptians. It also establishes geographic continuity with 
baboons from the fabled Land of Punt (Dominy et al., 2020), giving weight to speculation that 
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Punt and Adulis were essentially the same trading centres separated by a thousand years of 
history.

Editor's evaluation
This fundamental Research Advance sheds new light on the ancient baboon trade in the Red Sea. 
Combining ancient DNA methods from a mummified baboon with historical accounts, this work 
provides compelling evidence connecting the ancient Egyptian trade of baboons with the ancient 
port city of Adulis. The results will be of significance to a broad range of scholars interested in 
applying ancient DNA to improve our knowledge of historical events.

Introduction
Adulis, on the coast of present- day Eritrea, was an important hub during the rise of cross- ocean 
maritime trade, connecting ships, cargoes, and ideas from Egypt, Arabia, and India (Burstein, 2002; 
Munro- Hay, 1982; Seland, 2008). Trade peaked between the fourth and seventh centuries CE, 
propelling the rise and expansion of the Aksumite kingdom, but its occupation history extends, at 
minimum, to the first millennium BCE (Zazzaro et al., 2014). Corroborating this archaeological record 
are written accounts that draw attention to the importance of Adulis as one of the foremost sources of 
African animals or animal products during the Hellenistic period (323–31 BCE). In Topographia Chris-
tiana, a sixth- century text, the Nestorian merchant Cosmas Indicopleustes recounts his own visit to 
Adulis in 518 CE (Fauvelle- Aymar, 2009; Hatke, 2013). There he copied the text of a stele inscribed in 
Greek and known today as the Monumentum Adulitanum I. The text celebrates the military conquests 
of Ptolemy III Euergetes (reign: 246–222 BCE) and notes the local availability of war elephants for 
himself and his predecessor, Ptolemy II Philadelphus (reign: 284–246 BCE) (Bowersock, 2013).

Echoing this account is the first- century Periplus Maris Erythraei, an anonymous text focused on 
maritime trade across the Red Sea Basin: ‘practically the whole number of elephants and rhinoceros 
that are killed live in the places inland, although at rare intervals they are hunted on the seacoast even 
near Adulis’ (Casson, 1989; Casson, 1993). Pliny the Elder described Adulis as a thriving emporium in 
his Naturalis Historia, another first- century text, and commented on the availability of ivory, rhinoceros 
horn, hippopotamus hides, tortoise shell, and sphingia—or ‘sphinx monkeys,’ a term that probably 
refers to the gelada, Theropithecus gelada (Jolly and Ucko, 1969). Pliny’s account relied heavily on 
the writings of Agatharchides of Cnidus (ca. 145 BCE), who described ‘Aithiopia’ (meaning the Red 
Sea coast and African hinterlands) as a source of sphinx monkeys, cepi (probably patas monkeys, 
Erythrocebus patas; Burstein, 1989), and cynocephali—or ‘dog- heads.’ Strabo’s Geographica refer-
ences the worship of cynocephali at Hermopolis (Egypt), making it clear that the animal in question 
is the hamadryas baboon (Papio hamadryas), the traditional sacred animal of the Egyptian god Thoth 
(Figure 1). The source of baboons in ancient Egypt is an enduring question (Dominy et al., 2020) as 
the current distribution of baboons excludes Egypt (Figure 2) and there is no prehistoric evidence of 
baboons occurring in Egypt naturally (Geraads, 1987).

Though fragmentary, this historiography points to Adulis as a commercial source of mummi-
fied baboons in Ptolemaic catacombs, such as those at Saqqara and Tuna el- Gebel (Goudsmit and 
Brandon- Jones, 1999; Peters, 2020) [or those of their progenitors if Ptolemaic Egyptians maintained 
captive breeding programs; (von den Driesch et al., 2004)]. At the same time, these accounts invite 
questions focused on the source of pre- Ptolemaic baboons recovered from Gabbanat el- Qurud, 
Egypt (Lortet and Gaillard, 1907) and dated to ca. 800–540 BCE (Richardin et al., 2017), a span that 
corresponds to the 25th Dynasty and Late Period of Egyptian antiquity. If these older specimens can 
be traced to Eritrea, and by extension Adulis, then they have the potential to extend the time depth 
of Egyptian–Adulite trade by as much as five centuries.

Mummified baboons have been investigated morphologically, revealing species- level taxonomic 
assignments as well as individual details, such as age, sex, and pathological condition (Boessneck, 
1987; Brandon- Jones and Goudsmit, 2022; Goudsmit and Brandon- Jones, 1999; Peters, 2020). 
Such data are telling, but insufficient for determining fine- scale geographic origins. Recent oxygen 
and strontium stable isotope evidence suggests that mummified hamadryas baboons were imported 
from a region encompassing northern Somalia, Eritrea, and Ethiopia (Dominy et al., 2020), a level of 
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Figure 1. Strabo’s reference (17.1.40) to the worship of cynocephali at Hermopolis Magna makes clear that the animal in question is the hamadryas 
baboon (Papio hamadryas). The sanctuary and temple complex featured several 35- tonne statues of P. hamadryas as the embodiment of Thoth. One 
of the oldest deities in the Egyptian pantheon, Thoth is best known as a god of writing and wisdom, a lunar deity, and vizier of the gods, but also as a 
cosmic deity, creator god, and warrior (Stadler, 2012). The quartzite statues were erected by Amenhotep III, 18th Dynasty, New Kingdom, 1390–1353 
BCE. Photograph by N.J. Dominy.

https://doi.org/10.7554/eLife.87513


 Research advance      Ecology | Genetics and Genomics

Grathwol et al. eLife 2023;12:e87513. DOI: https://doi.org/10.7554/eLife.87513  4 of 24

geographic precision with limited practical value. Another limitation concerns the captive breeding of 
some animals. For instance, stable isotopes can reveal a lifetime in Egypt but not the geoprovenance 
of the source population, as shown for olive baboons from the Ptolemaic catacombs of North Saqqara 
(Dominy et al., 2020). The analysis of ancient DNA (aDNA) recovered from baboon mummies and 
compared to the current distribution of baboon genetic diversity has the potential to provide more 
detailed insights on the geographic origin of baboons in ancient Egypt. To explore this possibility, we 
sequenced the mitochondrial genome (mitogenome) of a mummified baboon to infer its geographic 
origin through phylogenetic assignment.

Gabbanat el-Qurud
In Topography of Thebes, Wilkinson, 1853 noted a site called Gabbanat el- Qurud (‘Valley of the 
Monkeys’) located ca. 2.5  km north–northwest of Medinet Habu, the mortuary temple of Ramses 
III. Intrigued by this observation, French Egyptologists Louis Lortet and Claude Gaillard sought and 
found the site in February 1905, along with the remains of mummified baboons. They recovered 
‘17 skulls and a large quantity of bones,’ which they attributed to Papio anubis and P. hamadryas 
(Lortet and Gaillard, 1907). The assemblage includes juvenile and adult males and females buried in 
jars, sarcophagi, or wooden coffins. Now accessioned in the Musée des Confluences, Lyon, France, 
the linen wrapping of one mummified individual (MHNL 90001206) was dated radiometrically to 
803–544 cal. BC (95.4%) (Richardin et al., 2017).

Ottoni et  al., 2019 sampled dental calculus from 16 individuals in this same assemblage and 
reported the preservation of ancient microbial DNA in a subset of six. Their success motivated us to 

Figure 2. Present- day distributions of the six baboon species, major mitochondrial clades, and provenance of samples analysed in this study. 
(a) Overview of species distributions according to the IUCN (2020) and coloured by species (red: P. papio; brown: P. ursinus; yellow: P. cynocephalus; 
orange: P. kindae; green: P. anubis; purple: P. hamadryas). Colour- patterned regions reflect main mitochondrial clade attribution resulting from 
phylogenetic reconstructions and are denoted with capital letters A–K (Figure 8). Squares and circles represent geoprovenance of mitogenomes 
and partial mtDNA datasets (e.g. D- loop, cytochrome b), respectively, and are coloured by species. Note that introgressive hybridization has led to 
discordances between species assignment and mitochondrial clades. (b) Detailed view of the distribution of mitochondrial subclades G3- X, G3- Y, 
and G3- Z in the northeastern distribution of baboons. Samples attributed to G3- Y, the subclade assigned to the mummified baboon in phylogenetic 
reconstructions and haplotype networks, are highlighted with asterisks. The locations of the excavation site of the mummified baboon, Gabbanat el- 
Qurud, and Adulis are marked with magenta triangles. Male baboon drawings by Stephen Nash, used with permission.
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extract DNA from the remaining tooth material of ten individuals (Table 1, Supplementary file 1). In 
addition, we obtained samples (skin, bone, or tooth) from 21 modern historic specimens of baboons 
available in museum collections and representing the northeast African distribution of Papio (Table 1, 
Figure 2). These specimens were collected between 1855 and 1978, and we denote them ‘historic 
samples’ in the remainder of the article to distinguish them both from the older mummified specimens 
(‘mummified samples’) and recently collected material (‘modern samples’). Latitude–longitude infor-
mation on the origin of the specimens was either derived from the respective museum database or 
assigned based on the listed provenance (Table 1).

Results
Mitogenomes from mummified and historic specimens
We discarded seven historic samples and nine mummified samples from our analysis due to insuffi-
cient DNA content, sequencing failure, or low coverage and sequencing depth (Supplementary file 
1). Thus, our results are based on the newly generated mitogenomes of 14 historic and 1 mummified 
individual (Table 1). In total, we obtained 896,025,770 raw sequence reads, with a mean of 34,462,530 
(± SD 27,945,321) raw sequence reads per sample. On average, 95.5% of reads survived trimming and 
a median of 9934 (range: 244–2,722,354) reads per sample mapped to the reference mitogenome. 
After removal of duplicates (duplication level median: 25.1%; range: 2.5–92.6%), a median of 7398 
(range: 237–497,458) mapped reads per sample resulted in the median final sequencing depth of 
26× (range: 0.21–2952×). After exclusion of samples with low quality, the final dataset had a median 
final sequencing depth of 37× (range: 16–2952×), with a median of 0.4% undetermined sites (range: 
0–1.7%) and a median breadth of coverage of at least 3× of 99.3% (range: 97.4–100%) (Supplemen-
tary file 1). All these metrics differed considerably depending on sample age (historic versus mummi-
fied) and DNA concentration (Figures 3 and 4). Capture enrichment strongly increased the number 
of mapped reads and final mean coverage compared to the shotgun approach (Figures 3 and 4). GC 
content of sequences was 40–50% (Figure 5) in the same range as the reference genomes.

The sequencing reads of the mummified sample (MHNL51000172) exhibit C to T and G to A 
misincorporations at 5′ and 3′ ends, reaching frequencies of 3.3 and 1.6% at the first/last position of 
the read (Figure 6). Mapped reads of the mummified sample agreed to median of 99.2% (IQR 1.6%) 
when focussing on the 125 sites that exhibited fixed differences between subclades and differed at 
three sites from the variant found in its subclade (Figure 7a). When focussing on the 37 sites that are 
fixed in the subclade of attribution of the mummified baboon but differed in its consensus sequence, 
mapped reads agreed to a median of 97.3% (IQR 3.1%) (Figure 7b).

Phylogenetic mapping
Phylogenetic trees inferred from maximum likelihood (ML) and Bayesian inference (BI) revealed iden-
tical topologies with generally strong node support (100% bootstrap support [BS] and posterior 
probability [PP] 1.0) and clearly defined geographic clades (Figure 8, Figure 8—figure supplement 
1). These mitochondrial clades did not directly mirror species assignments. Within the northeastern 
baboons, the central olive baboon clade J from Democratic Republic of the Congo, Tanzania, South 
Sudan, and southern Sudan diverged first, followed by northern yellow baboons of clade G1 including 
a sample from Somalia. Hamadryas baboons formed clade G3, which also included olive baboons 
from the region. Clade G3 contained three subclades: subclade G3- Z comprised hamadryas baboons 
from Ethiopia and Djibouti; subclade G3- X comprised hamadryas and olive baboons from Ethiopia, 
Eritrea, and Somalia; and subclade G3- Y comprised hamadryas and olive baboons from northeastern 
Sudan and Eritrea. The mummified baboon from Gabbanat el- Qurud (MHNL 51000172) was located 
in subclade G3- Y, closely related to samples from Eritrea and northeastern Sudan.

The median- joining haplotype networks differentiated samples within clade G3 in greater detail 
and in a more precise geographic context (Figure 9, Figure 9—figure supplement 1). They revealed 
the same three subclades within the G3 clade. The HVRI and the cyt b networks were concordant 
both with each other and with the phylogenetic reconstructions in the attribution of samples to the 
different subclades, but exhibited slight discrepancies in the relation of clades to each other and 
the positioning of samples within the clades. Subclade G3- X contained hamadryas baboons from 
Ethiopia, Somalia, and Eritrea. Subclade G3- Z contained samples from Ethiopia, Somalia, Djibouti, 
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Table 1. Information on samples analysed in this study.

Taxon Origin Museum ID Country Latitude Longitude MitoClade AccNo Reference

P. hamadryas MNHN MO- 1972–357 ETH 9.320 42.119 G3- X OQ538080 This study

P. hamadryas SMNS SMNS- Z- MAM- 001034* ETH 11.500 39.300 G3- X OQ538076 This study

P. hamadryas MfN ZMB_Mam_025647_(2) ETH 14.164 38.891 G3- X OQ538079 This study

P. hamadryas SMNS SMNS- Z- MAM- 000960 ERI 15.783 38.453 G3- X OQ538078 This study

P. hamadryas NHMUK ZD.1910.10.3.1 SOM 9.933 45.200 G3- X MT279063
Roos et al., 
2021

P. hamadryas MfN ZMB_Mam_012808 ETH 9.314 42.118 G3- X OQ538089 this study

P. anubis Wild ETH 8.968 38.571 G3- X JX946196
Zinner et al., 
2013

P. hamadryas MfN ZMB_Mam_042543_(1) ETH 9.593 41.866 G3- Z OQ538084 this study

P. hamadryas MfN ZMB_Mam_074849 DJI 11.589 43.129 G3- Z OQ538085 this study

P. hamadryas MNHN MO- 1972–359 ETH 6.998 40.478 G3- Z OQ538086 this study

P. hamadryas SMNS SMNS- Z- MAM- 001288 SDN 19.110 37.327 G3- Y OQ538081 this study

P. hamadryas Wild ERI 15.011 38.971 G3- Y JX946201
Zinner et al., 
2013

P. hamadryas SMNS SMNS- Z- MAM- 007509† - - - G3- Y OQ538082 this study

P. hamadryas MHNL 51000172 EGY - - G3- Y OQ538083 this study

P. anubis SMNS SMNS- Z- MAM- 000584 ‡ SDN 13.460 33.780 G3- Y OQ538075 this study

P. cynocephalus Wild TNZ 7.347 37.165 G1 JX946199
Zinner et al., 
2013

P. cynocephalus MNHN ZM- MO- 1977- 5 SOM 3.243 45.471 G1 OQ538088 this study

P. anubis NHMUK ZD1929.4.27.2 COD 0.800 26.633 J MT279061
Roos et al., 
2021

P. anubis NHMUK ZD1929.4.27.1 COD 1.183 27.650 J MT279062
Roos et al., 
2021

P. anubis Wild 19GNM2220916 TNZ 4.679 29.621 J MG787545
Roos et al., 
2018

P. anubis SMNS SMNS- Z- MAM- 032128 SSD 4.281 33.555 J OQ538087 this study

P. anubis SMNS SMNS- Z- MAM- 000583 SDN 13.333 32.729 J OQ538077 this study

P. anubis MfN ZMB_Mam_074869 CMR 5.533 12.317 F OQ538071
Kopp et al. in 
prep

P. anubis Wild NGA 7.317 11.583 F JX946198
Zinner et al., 
2013

P. anubis MfN ZMB_Mam_074887 CMR 9.328 12.946 F OQ538069
Kopp et al. in 
prep

P. anubis MfN ZMB_Mam_074885 NGA 7.298 10.318 F OQ538064
Kopp et al. in 
prep

P. anubis MfN ZMB_Mam_074883 CMR 6.334 9.961 F OQ538072
Kopp et al. in 
prep

P. papio Wild SEN 12.883 12.767 E JX946203
Zinner et al., 
2013

P. anubis NHMUK ZD.1947.586 SLE 8.917 11.817 E MT279064
Roos et al., 
2021

P. anubis MfN ZMB_Mam_075043 TGO 9.260 0.781 D OQ538066 Kopp et al. in 
prep

Table 1 continued on next page
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from the southern tip of Eritrea, and the Arabian Peninsula. Subclade G3- Y contained samples from 
Eritrea, eastern Sudan, the Arabian Peninsula, and the mummified sample MHNL 51000172. Individ-
uals closely related to this mummified baboon in the cyt b network were those from Sudan (on the 
Red Sea coast and in Senaar), Eritrea (between 14.3–16.0N 36.7–39.0E), and the Arabian Peninsula 
(Figure 9—figure supplement 1), and in the HVRI network samples from location ‘Bbr’ (Barka Bridge, 
15.6N 38.0E) in Eritrea (Figure 9).

Discussion
We succeeded in sequencing the mitogenomes of 14 historic baboons from northeastern Africa 
and a mummified baboon recovered from Gabbanat el- Qurud, presenting the first genetic data of a 
mummified baboon from ancient Egypt to date. DNA of the mummified baboon shows post- mortem 

Taxon Origin Museum ID Country Latitude Longitude MitoClade AccNo Reference

P. anubis MfN ZMB_Mam_011198 TGO 6.228 1.478 D OQ538067
Kopp et al. in 
prep

P. anubis Wild CIV 8.800 3.790 D JX946197
Zinner et al., 
2013

P. anubis MfN ZMB_Mam_007396_(1) TGO 6.950 0.585 D OQ538065
Kopp et al. in 
prep

P. anubis NHMUK ZD.1939.1022 NER 17.000 7.933 D MT279065
Roos et al., 
2021

P. anubis NHMUK ZD.1939.1020 NER 17.683 8.483 D MT279066
Roos et al., 
2021

P. anubis MNHN ZM- MO- 1960- 476 TCD 20.344 16.786 K MT279067
Roos et al., 
2021

P. anubis MNHN MO- 1996- 2511 CAF 3.905 17.922 K OQ538068
Kopp et al. in 
prep

P. anubis NHMUK ZD.1907.7.8.11 CAF 8.000 20.000 K MT279068
Roos et al., 
2021

P. anubis MNHN MO- 1996- 2510 CAF 4.966 18.701 K OQ538070
Kopp et al. in 
prep

P.ursinus Wild ZAF 24.680 30.790 B JX946205
Zinner et al., 
2013

P. cynocephalus Wild TNZ 11.261 37.514 B JX946200
Zinner et al., 
2013

P. kindae ZMB 12.591 30.252 C JX946202
Zinner et al., 
2013

P. cynocephalus Wild 04MNM1300916 TNZ 6.119 29.730 H MT279069
Roos et al., 
2021

P. ursinus Wild ZAF 34.456 20.407 A JX946204
Zinner et al., 
2013

P. cynocephalus Wild 24UNF1150317 TNZ 7.815 36.895 MT279060
Roos et al., 
2021

Theropithecus gelada FJ785426
Hodgson 
et al., 2009

AccNo, GenBank accession number; NHMUK, Natural History Museum, London; MNHN, Muséum National d'Histoire Naturelle, Paris; MfN, Museum 
für Naturkunde, Berlin; SMNS, State Museum of Natural History Stuttgart; MdC, Musée des Confluences, Lyon
*Mislabelled in museum records as T. gelada.
†Unclear provenance ‘Somaliland’ (not equal to present- day Somaliland).
 ‡Misidentified provenance ‘Abyssinia’ as Ethiopia in museum records.

Table 1 continued
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damage, which is, however, relatively low compared to what can be expected for samples of similar 
age (Dabney et  al., 2013b, Kistler et  al., 2017). Low frequencies of post- mortem damage were 
observed for aDNA from mummified specimens and have been attributed to the water deprivation 
during the mummification process, which may prevent hydrolytic deamination (Rossi et al., 2021). 
Post- mortem damage observed here is within the range previously reported for aDNA derived from 
mummified Egyptians (Schuenemann et  al., 2017) and sheep recovered from an Iranian saltmine 
(Rossi et al., 2021), which supports the authentic origin of our ancient sequence data and tends to 
rule out the possibility of contamination with modern DNA. The very low frequency of mismatches in 
the mapped reads from the mummified sample and its unique sequence are further evidence against 
the concern of contamination from other baboon samples.

Our phylogenetic analysis of the newly generated mitogenomes in combination with published 
mitochondrial sequence data produced tree topologies in agreement with those of prior studies, 
with three well- supported clades across the northeastern distribution of Papio (Roos et al., 2021). 
As previously described, introgressive hybridization has led to discordances between species assign-
ment and mitochondrial clades (Rogers et al., 2019; Sørensen et al., 2023; Zinner et al., 2009; 
Zinner et al., 2011). Our findings are notable for including specimens from previously unsampled or 
underrepresented regions, filling gaps in our knowledge of the distribution of mitochondrial clades. 
For instance, we report mitochondrial sequence data of baboons from regions previously unstudied, 
namely South Sudan and Sudan. We show that samples from South and southern Sudan, east of the 
White Nile, nest within the central olive baboon clade J, whereas samples from the coastal region 
of Sudan and east of the Blue Nile nest within the hamadryas clade G3. These findings expand the 
northern distributions of both clade J and clade G3 significantly, while also highlighting a strong 
geographic affinity between clade J and the Albertine Rift and (White) Nile Valley. Taxonomically, this 
clade corresponds with two subspecies recognized by Hill, 1970: P. a. heuglini and P. a. tesselatum.

A mummified hamadryas baboon from Gabbanat el- Qurud (MHNL 51000172) yielded sufficient 
aDNA to produce a complete mitogenome, which fell unequivocally in subclade G3- Y (cf. Kopp 

Figure 3. Comparison of DNA concentration and amount of distinct mapped reads. A higher DNA concentration 
produces a higher number of distinct mapped reads. Capture enrichment additionally increases the number 
of distinct mapped reads. Circles and triangles depict the different sequencing approaches, enrichment, and 
shotgun, respectively; size is related to the final coverage of the mitogenome; colours represent the different 
sample types and sequencing approaches (yellow: shotgun sequencing of the mummified sample, MHNL 
51000172; blue: shotgun sequencing of historic sample; purple: capture enrichment of historic sample; green: 
capture enrichment of mummy sample).

https://doi.org/10.7554/eLife.87513
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et  al., 2014b). Haplotype networks allowed us to further refine subclade G3- Y, which consists of 
P. hamadryas and P. anubis samples from Eritrea and P. anubis samples from neighbouring regions 
in Sudan. G3- Y also includes samples from the southern- most distribution of P. hamadryas on the 
Arabian Peninsula. Geographic stability of phylogenetic clades over millennia has been shown for 
other baboon populations (Mathieson et al., 2020), leading us to infer that MHNL 51000172 (or its 
maternal ancestor) originated in the region where clade G3- Y exists today. We cannot completely rule 
out an Arabian origin for MHNL 51000172, as our data does not cover the entire historic and present 
haplotype diversity there, but the tight clustering of the currently available Arabian sequences and 
distances in the HVRI network make an Arabian origin of MHNL 51000172 unlikely. Similarly, the close 
relationship with a sample of P. anubis from Sudan east of the Blue Nile (SMNS- Z- MAM- 000584) could 
indicate trafficking of baboons along the Nile, as suggested for specimens of P. anubis recovered from 
Ptolemaic catacombs (Brandon- Jones and Goudsmit, 2022; Peters, 2020) and the Predynastic site 
of Hierakonpolis (Van Neer et al., 2004). However, MHNL 51000172 was identified phenotypically as 
P. hamadryas (Lortet and Gaillard, 1907), and the distribution of hamadryas baboons is restricted to 
more eastern regions (Figure 2). If the distributions of baboons in northeastern Africa have remained 
roughly stable within the last 2500 y (as supported by ecological niche modelling; Chala et al., 2019), 
the region in Sudan east of the Blue Nile and west of the Atbarah River could not have served as a 
source region for hamadryas baboons. Thus, it stands to reason that MHNL 51000172 (or its maternal 
ancestor) was captured in present- day Eritrea (or close neighbouring regions) and trafficked to Egypt. 
The value of this finding is twofold. First, it connects the mummified baboon to populations that live 
today in Eritrea and eastern Sudan, between 13° and 20° latitude. Second, it corroborates the reports 

Figure 4. Overview of sequencing success for museum and mummy specimens. Mean (± SD) final coverage of the mitogenome is shown for each 
sample (with abbreviated museum ID). Circles and triangles depict the different sequencing approaches, enrichment and shotgun, respectively; colours 
represent the different sample types and sequencing approaches (yellow: shotgun sequencing of mummy sample; blue: shotgun sequencing of historic 
sample; purple: capture enrichment of historic sample; green: capture enrichment of mummy sample). Dashed line shows the cut- off limit 10× for mean 
final coverage; samples below were excluded from final analyses.

https://doi.org/10.7554/eLife.87513
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of Greco- Roman historians, who described Eritrea, and specifically Adulis, as the sole source of P. 
hamadryas for Ptolemaic Egyptians.

Yet, this baboon predates the reign of Ptolemy I by centuries, presuming it is contemporaneous 
with another baboon (MHNL 90001206) in the same assemblage, ca. 800–540 BCE (Richardin et al., 
2017). Thus, our findings raise the possibility that Adulis already existed as a trading centre or entrepôt 
during the 25th and 26th dynasties of Egypt. Although speculative, and expressed with due caution, 
our reasoning would extend the antiquity of Egyptian–Adulite trade by as much as five centuries.

Arguing for pre- Ptolemaic contact between Egypt and Adulis is fraught in the absence of corrob-
orating material evidence—but even so, the archaeological record is not entirely silent on the pros-
pect. Manzo, 2010 and others (Zazzaro et al., 2014) reassessed the ceramic tradition at Adulis and 
developed a chronology that stretches to the early second millennium BCE, the deepest levels of 
which contained a fragment of blue glass with yellow inlays similar to Egyptian glass from the New 

Figure 5. Distribution of GC content in historic samples and mummified samples.

Figure 6. DNA damage plot for the sample of the mummified baboon MHNL 51000172 from 5′ and 3′ read ends, showing mean frequencies of C to T 
substitutions (red), G to A substitutions (blue), deletions (grey), and insertions (yellow) over the first/last 25 positions.

https://doi.org/10.7554/eLife.87513
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Kingdom (Fattovich, 2018). In Egypt, contact with the Eritrean lowlands is attested by trade goods 
dating to ca. 1800–1650 BCE or earlier, including potsherds, obsidian, and fragments of carbonized 
ebony (Fattovich, 2018; Lucarini et  al., 2020). Discovered at Mersa Gawasis, a Middle Kingdom 
harbour, these artefacts appear to align the prehistory of Adulis with the fabled Land of Punt (Bard 
and Fattovich, 2018; Manzo, 2010; Manzo, 2012), an enigmatic toponym scattered across scant and 
disconnected records (Cooper, 2020).

Punt existed in a region south and east of Egypt, and was accessible by land or sea. For Egyp-
tians, Punt was a source of ‘marvels,’ particularly incense, but also baboons, that drove bidirectional 
trade for 1300 y (ca. 2500–1170 BCE) (Tallet, 2013). Some scholars have described this enterprise 
as the beginning of economic globalization (Fattovich, 2012), whereas others view it as the earliest 
maritime leg of the spice route (Keay, 2006), a trade network that would shape geopolitical fortunes 
for millennia. The global historical importance of Punt is therefore considerable, but there is a prob-
lem—its location is uncertain, in part because the toponym fades from view. From the early first millen-
nium BCE, there are no further records of Egyptians in Punt or of Puntites visiting Egypt. There are, 
however, two incomplete inscriptions that mention Punt in a narrative context, and both are attributed 
to the 26th (Saite) Dynasty (Betrò, 1996; Cavasin, 2019). One of these, the Defenneh stele, describes 

Figure 7. Barplots showing the bases of mapped reads for the sample of the mummified baboon MHNL 51000172 
at sites that (a) exhibit fixed differences among northeastern subclades and (b) are fixed in subclade G3- Y but differ 
in the consensus sequence of the mummified baboon. Sites are named according to their position and the base in 
the G3- Y consensus sequence and coloured by base. Bases are colour- coded (A: red; C: blue; G: yellow, T: green).

https://doi.org/10.7554/eLife.87513
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Figure 8. Phylogeny of baboons based on complete mitochondrial genomes as inferred from maximum likelihood analysis. P. cynocephalus from the 
Udzungwa Mountains and outgroup T. gelada were omitted from visualization for clarity. The analysed baboon mummy sample MHNL 51000172 (in 
bold) falls into clade G3- Y. Clade names (A–K) according to Roos et al., 2021, subclades X–Z according to Kopp et al., 2014b; sample IDs include 
putative species (P.ham, P. hamadryas; P.anu, P. anubis; P.cyn, P. cynocephalus; P.urs, P. ursinus; P.pap, P. papio), country of origin code (CAF, Central 
African Republic; CMR, Cameroon; COD, Democratic Republic of Congo; DJI, Djibouti; ERI, Eritrea; ETH, Ethiopia; NGA, Nigeria; SDN, Sudan; SSD, 
South Sudan; SEN, Senegal; SLE, Sierra Leone; SOM, Somalia; TGO, Togo; note that sample SMNS7509 is of unclear geoprovenance), and abbreviated 
museum code. Nodes with a branch support below 95% are marked with a grey dot. Mitochondrial genomes generated in this study are marked with an 
asterisk.

Figure 8 continued on next page

https://doi.org/10.7554/eLife.87513


 Research advance      Ecology | Genetics and Genomics

Grathwol et al. eLife 2023;12:e87513. DOI: https://doi.org/10.7554/eLife.87513  13 of 24

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Phylogeny of baboons based on complete mitochondrial genomes under Bayesian inference.

Figure 8 continued

Figure 9. Median- joining haplotype network of northeastern baboons based on 644 HVRI sequences (176 bp). The analysed baboon mummy sample 
resolves in clade G3- Y (depicted in red, black arrow). Circle colour reflects species and country of origin (‘Arabia’' comprises samples from Yemen and 
Saudi Arabia, ‘Strait’ comprises samples from near the Bab- el- Mandab Strait, i.e. southern Eritrea, Djibouti, northern Somalia).

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Median- joining haplotype network of northeastern baboons based on 137 cyt b sequences (1140 bp).

https://doi.org/10.7554/eLife.87513
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an expedition to Punt that was saved from dying thirst by unexpected rainfall on ‘the mountains of 
Punt’ (Meeks, 2003). The Defenneh stele is a testament to the efforts of Saitic pharaohs to revive 
maritime commerce on the Red Sea (Lloyd, 1977), while also raising the possibility of renewed trade 
with Punt. It is perhaps no coincidence that the Saite dynasty (664–525 BCE) exists squarely within the 
radiometric date range of hamadryas baboons from Gabbanat el- Qurud.

Punt, like Adulis, was a source of baboons for Egyptians, a history that raises the possibility of 
using baboons as a tool for testing geographic hypotheses. Recently, Dominy et al., 2020 used stable 
isotope mapping methods to determine the geoprovenance of mummified baboons from Thebes 
(modern- day Luxor) and dated to the (late) New Kingdom. Their results pointed to present- day Ethi-
opia, Eritrea, or Djibouti, as well as portions of Somalia, an area that corroborates most scholarly views 
on the location of Punt (Breyer, 2016; Kitchen, 2004), but see Meeks, 2002; Meeks, 2003; Tallet, 
2013. Here, we used aDNA to show that at least one baboon from the 25th Dynasty or Late Period of 
Egyptian history—a span that coincides with the last known expeditions to Punt, but predates Greco- 
Roman accounts of Adulis as a source of baboons—can be traced to Eritrea. Thus, our findings appear 
to establish primatological continuity between Punt and Adulis. Such a conclusion must be viewed 
with caution, but it bolsters recurrent conjecture among some historical archaeologists: that Punt and 
Adulis were essentially the same trading centre from different eras of Egyptian antiquity (Doresse, 
1959; Fattovich, 2018; Kitchen, 2004; Massa, 2021; Phillips, 1997; Sleeswyk, 1983).

At minimum, our results reinforce the view that ancient Egyptian mariners travelled great distances 
to acquire living baboons. A great strength of this conclusion is that it is based on distinct but comple-
mentary methods, but of course, the sample size is paltry and limited to P. hamadryas, one of two 
baboon species recovered from Gabbanat el- Qurud. Moving forward, it would be desirable to expand 
the sample size, examine specimens of P. anubis as well as nuclear genomic data for increased preci-
sion, and include different time intervals of baboon mummification.

Future directions
Direct radiocarbon dating of MHNL 51000172 and other baboons from Gabbanat el- Qurud is an 
urgent priority, in part because doing so would put these specimens into conversation with those from 
the catacombs of Tuna el- Gebel. The oldest gallery at Tuna el- Gebel, Gallery D, is dated to the 26th 
Dynasty and contains a single species of baboon: P. anubis. Some scholars (Peters, 2020; von den 
Driesch et al., 2004) have argued that these olive baboons, as well as Chlorocebus aethiops (also 
found in Gallery D), were sourced from the Sudanese Nile Valley and adjacent areas, which predicts 
membership in clade G3- Y, although clade J is also plausible. Construction of Gallery C began during 
the first period of Persian rule in Egypt (524–404 BCE) and continued through the 30th and Ptolemaic 
dynasties. As every phase of Gallery C contains mummified specimens of both P. anubis and P. hama-
dryas, there is rich opportunity to explore diachronic changes in trade routes using phylogeographic 
methods. Uniform membership in clade G3- Y, for example, would affirm that Late Period Egyptians 
were sourcing P. hamadryas from Eritrea as early as the sixth century BCE. Testing this hypothesis may 
prove rewarding.

Materials and methods
DNA extraction and sequencing
DNA damage and degradation is expected from ancient (mummified) and nineteenth/early twentieth- 
century museum specimens. We therefore analysed mitochondrial DNA (mtDNA), which is available in 
higher copy numbers than nuclear DNA and holds greater potential for success when sample quality 
is poor. We analysed complete mitogenomes because they are effective for reconstructing robust 
mitochondrial phylogenies of modern baboons and have proven to indicate the geographic origin 
of the corresponding sample reliably (Roos et al., 2021; Zinner et al., 2013). Recent advances in 
sequencing technologies allow the successful sequencing of mitogenomes either with a shotgun 
sequencing approach or, for samples with very low DNA quality and quantity, with a capture enrich-
ment approach (Schuenemann et al., 2017; Shapiro and Hofreiter, 2012).

We extracted DNA with a specific column- based method aimed at the recovery of short DNA 
fragments following established protocols and necessary precautions for the analysis of aDNA 
(Dabney et  al., 2013a; Rohland et  al., 2004; Roos et  al., 2021). In particular, samples from 
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mummified specimens were extracted separately and in a dedicated aDNA laboratory to prevent 
cross- contamination. Concentration of DNA extracts was measured on a Qubit fluorometer (Life Tech-
nologies, Singapore) and quality checked on a Bioanalyzer (Agilent, Santa Clara, USA) or Tapestation 
2200 (Agilent). All samples were initially sequenced with a shotgun approach. Samples with DNA 
extract concentrations below 4.5 ng/μl or final mitogenome sequencing depth below 10×, and with 
enough remaining DNA extract, were enriched for mtDNA with a capture approach.

For the shotgun approach, sequencing libraries were prepared with the NEBNext Ultra II DNA 
Library Prep Kit (New England BioLabs, Frankfurt, Germany) according to the manufacturer’s instruc-
tions without prior fragmentation. Library concentration and quality were assessed with the Qubit 
Fluorometer and Bioanalyzer and molarity was estimated via qPCR with the NEBNext Library Quant 
Kit (New England BioLabs). Libraries were single indexed with NEBNext Multiplex Oligos (New 
England BioLabs) with 5–11 PCR cycles and cleaned up with the kit’s beads.

For the capture enrichment approach, RNA baits (myBaits custom Kit, Arbor Biosciences, Ann 
Arbor, USA) were designed for the mitogenome of P. anubis East (GenBank Acc. No. JX946196; 
Zinner et al., 2013). We prepared libraries with the Accel- NGS 1S Plus DNA Library Kit and the 1S 
Plus Dual Indexing Kit (Swift Biosciences, Ann Arbor, USA) according to the manufacturer’s instruc-
tions for small fragment retention. Hybridization capture was performed with a 48 hr incubation step 
according to the manufacturer’s instructions for highly degraded DNA. After library amplification with 
14 PCR cycles, libraries were cleaned with SPRIselect beads (Beckmann Coulter, Krefeld, Germany).

Sequencing was performed with 24 libraries per lane (23  samples + pooled negative control 
to monitor contamination) on an Illumina HiSeq4000 (50 bp, single- end read) at the NGS Integra-
tive Genomics core unit of the University Medical Center Göttingen, Göttingen, Germany, or on 
a NovaSeq6000 SP flow cell (100  bp, paired- end read) at the Max Planck Institute for Molecular 
Genetics, Berlin, Germany. Capture enrichment libraries were reloaded and sequenced a second time 
to increase the number of reads.

Mitogenome assembly
Raw sequencing reads were demultiplexed and adapters trimmed at the sequencing facilities. We 
performed subsequent sequence processing on the central high- performance computing cluster 
bwForCluster BinAC. We checked read quality with FastQC 0.11.8 (Andrews, 2010), trimmed and 
filtered reads with Trimmomatic 0.39 (Bolger et al., 2014) using the settings  ILLUMINACLIP: TruSeq3-  
PE. fa: 2: 30: 10 MINLEN:30 SLIDINGWINDOW:4:20 LEADING:20 TRAILING:20, AVGQUAL:30, and 
confirmed adequate quality of trimmed reads again with FastQC. Reads were mapped with Burrows 
Wheeler Aligner (BWA) backtrack 0.7.17 (Li and Durbin, 2009) using default settings independently 
to each of the seven different mitogenomes of representatives of the northern baboon clades (P. 
anubis East JX946196; P. anubis Gombe MG787545; P. anubis West1 JX946197; P. anubis West 
2JX946198; P. cynocephalus North JX946199; P. hamadryas JX946201; P. papio JX946203). We chose 
this approach to avoid biases in downstream analyses introduced through the choice of the reference 
genome and used the consensus sequence resulting from the best mapping results in downstream 
analyses. We did not adjust the settings as usually recommended to improve mapping results for 
aDNA (Schubert et  al., 2012) but were stringent in mapping and filtering of reads to avoid the 
inclusion of nuclear mitochondrial DNA segments (NUMTs). Alignments were indexed with SAMtools 
1.10 ‘index’ and filtered with ‘view’ for mapped and (in the case of paired- end data) properly paired 
reads with a mapping quality of at least MAPQ 30. Library complexity was estimated with the ‘Esti-
mateLibraryComplexity’ from the Picard Toolkit 2.20.4 (Broad Institute, 2019). We merged BAM 
files of the same samples with ‘MergeSamFiles’ and removed duplicates with ‘MarkDuplicates’ from 
the Picard Toolkit. DNA damage was estimated calculating the frequency of base substitutions, inser-
tions, and deletions at the 5′ and 3′ end, respectively, with DamageProfiler 1.0 (Neukamm et al., 
2021). We calculated average sequencing depth with SAMtools 1.10 ‘depth’ (Li et al., 2009) as the 
sum of reads covering each position divided by the number of bases in the reference genome, and 
estimated GC- bias with ‘CollectGCBiasMetrics’ from the Picard Toolkit. We created a consensus 
sequence for each sample with the ‘doFasta’ option in ANGSD (Korneliussen et al., 2014) using the 
base with the highest effective depth (EBD) and setting positions with coverage below 2 to undeter-
mined. We only retained mitogenomes for further analyses for which at least 80% of the sequence 
were covered at 3×.

https://doi.org/10.7554/eLife.87513
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We augmented our dataset with published mitogenomes of baboons (Roos et al., 2021) and T. 
gelada as outgroup (Table 1) and aligned sequences with MUSCLE 3.8.81 (Edgar, 2004) as imple-
mented in the package msa 1.28.0 (Bodenhofer et al., 2015) in R 4.2.1 (R Development Core Team, 
2022) using standard settings with a maximum number of 16 iterations.

For a more fine- scale geographic representation, we further included published sequence data 
from the northeastern part of the baboon distribution of two different mitochondrial markers with 
differing resolution: the cytochrome b gene (cyt b) (Zinner et al., 2009; Zinner et al., 2015) and a 
fragment of the hypervariable region I (HVRI) of the D- loop (Hapke et al., 2001; Kopp et al., 2014a; 
Kopp et al., 2014b; Städele et al., 2015; Winney et al., 2004). We extracted the corresponding 
regions from the mitogenome alignment and again removed sequences with more than 10% unde-
termined sites.

We assessed contamination by checking mismatches of the mapped reads from the mummified 
sample at sites in the mitogenome that (i) are distinct between northeastern subclades (125 fixed 
differences) and (ii) are fixed in subclade G3- Y (considering all samples but the mummified baboon) 
but differ in the consensus sequence of the mummified sample (37 sites).

Phylogenetic reconstruction
To identify the phylogenetic affiliation of the newly investigated samples, we reconstructed phylo-
genetic trees based on the final dataset of 46 mitogenomes (alignment length: 16,628  bp) using 
ML and BI methods with W- IQ- Tree 1.6.12 (Nguyen et al., 2015; Trifinopoulos et al., 2016) and 
MrBayes 3.2.7 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003), respectively. 
We treated the mitogenome as a single partition, the optimal substitution model for phylogenetic 
reconstructions was detected to be TN + F + I + G4 (Tamura and Nei, 1993) under the Bayesian infor-
mation criterion and GTR + F + I + G4 (Tavaré, 1986) under the Corrected Akaike Information Crite-
rion with Modelfinder (Kalyaanamoorthy et al., 2017) as implemented in W- IQ- Tree. The ML tree was 
reconstructed with 10,000 ultrafast bootstrap replications (Hoang et al., 2018) applying the TN + F 
+ I + G4 model. The BI tree was reconstructed applying the GTR + I + G model and using four inde-
pendent Markov chain Monte Carlo runs with 1 million generations, a burn- in of 25%, and sampling 
every 100 generations. To ensure convergence, the Potential Scale Reduction Factor was checked to 
be close to 1 for all parameters. We visualized phylogenetic trees with the R package ggtree 3.4.2 (Yu 
et al., 2017) and adopted clade nomination of Roos et al., 2021 and Kopp et al., 2014b.

Haplotype networks
To determine the mitochondrial clade of origin of the analysed samples more precisely, we recon-
structed median- joining haplotype networks (Bandelt et al., 1999) with Popart 1.7 (Leigh and Bryant, 
2015) for both the HVRI (n = 644, 176 bp) and the cyt b (n = 137, 1140 bp) dataset.

Geographic maps
Geographic maps were created in R. We obtained species distribution shapefiles from IUCN (Gippoliti, 
2019; Sithaldeen, 2019; Wallis, 2020a; Wallis, 2020b; Wallis et al., 2020; Wallis et al., 2021), river, 
lake and coastlines from Natural Earth (https://www.naturalearthdata.com) via rnaturalearth 0.1.0 
(Massicotte and South, 2023).
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